	Exercise 11.1
The placement of the text is always centered vertically.

	Exercise 11.2
The parameter is used as the title for the frame.

	Exercise 11.3
The code to create a button:

 JButton button = new JButton("I am a button. I can display some text. You can also click me.");
 contentPane.add(button);

	Exercise 11.4
The code to create another button:

 JButton anotherButton = new JButton("I am also a button.");
 contentPane.add(anotherButton);

Only the last button is visible. It looks like it replaces the first button that was added.

	Exercise 11.5
Nothing happens when selecting a menu item. This is because no event handler has been added to the menu item yet.

	Exercise 11.6
The method to create the menu bar now looks like this:

 private void makeMenuBar()
 {
 JMenuBar menubar = new JMenuBar();
 frame.setJMenuBar(menubar);

 JMenu fileMenu = new JMenu("File");
 menubar.add(fileMenu);

 JMenuItem openItem = new JMenuItem("Open");
 fileMenu.add(openItem);

 JMenuItem quitItem = new JMenuItem("Quit");
 fileMenu.add(quitItem);

 JMenu helpMenu = new JMenu("Help");
 menubar.add(helpMenu);

 JMenuItem about = new JMenuItem("About ImageViewer");
 helpMenu.add(about);
 }

	Exercise 11.15
When resizing after an image is loaded it does not resize the image, but only the frame.

Resizing and then opening an image does not have any effect because the loading an image resizes the frame to fit the new image.

	Exercise 11.16
The panel now only shows the label with the version number. It does not show any image.

	Exercise 11.17
If there is no CENTER component then the other areas occupy its space if the frame is small, but the area remains empty once the other components have enough space to display their contents in full.

	Exercise 11.18
The calculator project is using BorderLayout and GridLayout.

	Exercise 11.19
The BlueJ editor window is made using BorderLayout and BoxLayout. BorderLayout is used for the main panel, the toolbar is using BoxLayout, and the status panel is using BorderLayout.

	Exercise 11.20
The Use Library Class dialog is using BorderLayout, BoxLayout and FlowLayout.

	Exercise 11.23
Solutions to exercises which contain programming can be found in the projects on the CD (imageviewer1-0, imageviewer2-0, etc.)

	Exercise 11.24
The frame.repaint() method updates the display of the image after we have modified the contents of the image.

	Exercise 11.26
It displays the following message in the status label: No image loaded.

	Exercise 11.27
The darker() method gets the width and height of the image, and then goes through each pixel and changes the color of the pixels, applying the darker() method belonging to the class java.awt.Color.

	Exercise 11.28
See imageviewer1-0.

	Exercise 11.29
See imageviewer1-0.

	Exercise 11.31
See imageviewer1-0.

	Exercise 11.32
static void showMessageDialog(Component parentComponent, Object message)
Brings up an information-message dialog titled "Message".

static void showMessageDialog(Component parentComponent, Object message, String title, int messageType)
Brings up a dialog that displays a message using a default icon determined by the messageType parameter.

static void showMessageDialog(Component parentComponent, Object message, String title, int messageType, Icon icon)
Brings up a dialog displaying a message, specifying all parameters.

We should use the second method as this allows us to specify a proper title for the dialog.

	Exercise 13.33

See imageviewer1-0.

	Exercise 11.34
An ActionListener is notified when the Enter key is pressed.

The user can be prevented from typing in the text field via the method setEditable(boolean b)
Text entered into a JTextField is stored in a Document. A DocumentListener can be added to the Document in order to receive notification of changes to it.

	Exercise 11.36
Once the new filter has been implemented as a subclass of Filter, little needs to be added to the ImageViewer class. An instance of the new class needs to be added to the list of filters in the createFilters() method. The rest is handled via polymorphism.

	Exercise 11.37
See the 11-37-imageviewer project.

	Exercise 11.38-11.43
See the imageviewer-final project.

	Exercise 11.45-11.50
See the imageviewer3-0 project.

	Exercise 11.51
The URL is: http://download.oracle.com/javase/tutorial/uiswing/

	Exercise 11.52
A selection of the available layout managers might be:
BorderLayout, BoxLayout, CardLayout, FlowLayout, GridBagLayout, GridLayout, SpringLayout and OverlayLayout.

The CardLayout allows sharing of limited space between alternative views. See JTabbedPane for an alternative way to achieve this.

The GroupLayout allows separate specification of the horizontal and vertical juxtaposition of components. In effect, components are always arranged relative to each other, but separately in the two dimensions.

	Exercise 11.53
See: http://download.oracle.com/javase/tutorial/uiswing/components/slider.html

	Exercise 11.54
See: http://download.oracle.com/docs/books/tutorial/uiswing/components/tabbedpane.html

	Exercise 11.55
See: http://download.oracle.com/j2se/1.5.0/docs/api/javax/swing/JSpinner.html

	Exercise 11.56
See: http://download.oracle.com/docs/books/tutorial/uiswing/components/progress.html

	Exercise 11.57
Since, in practice, it will be impossible to apply an inverse of every transformation, the simplest approach is simply to retain a copy of the image immediately prior to transformation. Whether it should be possible to apply undo multiple times – possibly up to some limit – will depend upon image size and available memory resources.

	Exercise 11.69
The existing infoLabel component and showInfo() method can be used for this. E.g., add the following in the play() method of MusicPlayerGUI:

 Track tk = trackList.get(index);
 showInfo("Now playing: " + tk.getTitle() + " by " + tk.getArtist());

infoLabel should be cleared when playing is stopped.

	Exercise 11.70
See the 11-70-musicplayer project.

	Exercise 11.72
The following method sets up the JSlider.
 /**

 * Set up the labels on the slider, based on the length of

 * the track being played.

 * @param trackLength The length of the track (in arbitrary units).

 */

 private void setSliderLabels(int trackLength)

 {

 if(trackLength > 0) {

 // How many ticks we want.

 int numberOfTicks = 10;

 // Place ticks to the nearest 1000.

 int roundedLength = trackLength - (trackLength % 1000);

 if(roundedLength == 0) {

 roundedLength = trackLength;

 }

 slider.setMajorTickSpacing(roundedLength / numberOfTicks);

 slider.setMinorTickSpacing(0);

 slider.setPaintLabels(true);

 slider.setMaximum(trackLength);

 }

 }
This method can be called from the play() method in MusicPlayerGUI:

 player.startPlaying(tk.getFilename());
 setSliderLabels(player.getLength());

Note that the track must be started playing before its length it obtained.

	Exercise 11.73
Adding a MouseListener (MouseAdaptor) to the JList and checking the click count in a callback to mouseClicked() is required.

 fileList.addMouseListener(new MouseAdapter() {

 public void mouseClicked(MouseEvent e) {

 if (e.getClickCount() == 2) {

 play();

 }

 }

 });

	Exercise 11.75
A JTable provides alignment control with headings.

	Exercise 11.76
See the project 11-76-musicplayer. A Thread is used to repeatedly check whether anything is being played, and to find out the current position, if so.

	Exercise 11.77
You can use the zuul-for-images project as a starting point for your students, if you wish. This has separated some of the user interface issues from the game control. The project folder contains an images folder with some sample images, if required.
A solution is available in the 11-77-zuul-with-images project.

