	Exercise 12.4
The use of many different utility classes is actually quite good. The alternative would have been to write our own similar functionality, and that would be a waste when it is already there.

A HashMap does not have the method tailMap() which is used in the search() method, so we can not replace the TreeMap with a HashMap.

	Exercise 12.5

Add the following to the run() method of AddressBookTextInterface:

 else if(command.equals("get")) {
 get();
 }
 else if(command.equals("remove")) {
 remove();
 }
and implementations of the get() and remove() methods:

 private void get()
 {
 System.out.print("Key: ");
 String key = parser.readLine();
 ContactDetails details = book.getDetails(key);

 if(details != null) {
 System.out.println(details);
 }
 else {
 System.out.println("No details matching " +
 key + " were found.");
 }
 }

 private void remove()
 {
 System.out.print("Key: ");
 String key = parser.readLine();
 book.removeDetails(key);
 System.out.println("Details matching " +
 key + " were removed.");
 }

	Exercise 12.6
It would be more appropriate to calculate the value. If we calculate the value, we don't have to remember to increase and decrease the value.

One example where it fails is if we accidentally put in the same contact details twice, then it would incorrectly increment the numberOfEntries twice. Another is if a set of details is only entered under a single key.

	Exercise 12.7
In principle, adding an email address as an additional key is both a useful and reasonable thing to be able to do. However, careful examination of the code will be necessary in order to establish all the places where changes will be required. There could easily be hidden assumptions that the number of keys is two rather than three.

	Exercise 12.8
It throws an error: java.lang.NullPointerException in AddressBook.removeDetails().

	Exercise 12.9
If software controlling an aircraft's systems simply crashed it may well leave the pilots with no control over the aircraft.

	Exercise 12.11
The modified method:

 public void removeDetails(String key)
 {
 ContactDetails details = book.get(key);
 if(details != null) {
 book.remove(details.getName());
 book.remove(details.getPhone());
 numberOfEntries--;
 }
 }

	Exercise 12.12
It depends... but it might be a good idea to report the error, as it is likely that the client of the removeDetails() actually thought that the key was there.

It could be reported with a return value which could be checked by the client.

	Exercise 12.13
See Section 12.2.2 in the fifth edition.

	Exercise 12.14
getDetails() and keyInUse() do not result in any errors no matter what arguments we give them. The results returned are able to indicate unambiguously both success and failure.

	Exercise 12.15
Amongst other things, if there is no user interface then printed error messages are pointless.

	Exercise 12.18
Yes, the output should be different. The graphical version should pop up a window and the text based version should print out a string.

	Exercise 12.20
No. A failed search for something should be expected behavior.

	Exercise 12.21
At least one of the arguments name and phone should contain a valid, non-blank string. If both of them are null or empty there is no key available to look up the address. If the name and phone are identical strings then this might result in implementation errors.

	Exercise 12.22
A constructor can not return any values to indicate an error. One way it could be solved is to use unchecked exceptions, which are discussed in the a later section of the book.

	Exercise 12.23
CharConversionException
EOFException
FileNotFoundException
InterruptedIOException
InvalidClassException
InvalidObjectException
IOException
NotActiveException
NotSerializableException
ObjectStreamException
OptionalDataException
StreamCorruptedException
SyncFailedException
UnsupportedEncodingException
UTFDataFormatException
WriteAbortedException

	Exercise 12.24
SecurityException is an unchecked exception.

	Exercise 12.25
See the project address-book-v3t.

	Exercise 12.27
Implementation of Iterator requires that a remove() method be included, but the body of the method should simply through the UnsupportedOperationException if it is called. This will prevent modification of the associated collection.

 /**

 * Remove an entry.

 * This operation is not permitted.
 * @throws UnsupportedOperationException if called.
 */

 public void remove()

 {

 throw new UnsupportedOperationException(
 "It is not permitted to remove entries.");

 }

	Exercise 12.28
The revised removeDetails() method:
 /**

 * Remove the entry with the given key from the address book.

 * The key should be one that is currently in use.

 * @param key One of the keys of the entry to be removed.

 * @throws IllegalArgumentException If the key is null.

 * @throws NoMatchingDetailsException If the key does not match

 * any details in the address book.

 */

 public void removeDetails(String key)
 throws NoMatchingDetailsException

 {

 if(key == null){

 throw new IllegalArgumentException(
 "Null key passed to removeDetails.");

 }

 if(keyInUse(key)) {

 ContactDetails details = book.get(key);

 book.remove(details.getName());

 book.remove(details.getPhone());

 numberOfEntries--;

 }

 else {

 throw new NoMatchingDetailsException(key);

 }

 }
Note that the changeDetails() method will also need altering because it calls removeDetails() which throws a checked exception.

	Exercise 12.29
The remove method from AddressBookTextInterface:

 /**
 * Remove an entry matching a key.
 */
 private void remove()
 {
 System.out.println("Type the key of the entry.");
 String key = parser.readLine();
 try {
 book.removeDetails(key);
 }
 catch(NoMatchingDetailsException e) {
 System.out.println("No details were found matching " +
 e.getKey());
 }
 }

	Exercise 12.30
This is bad for at least three reasons:

1. It is catching all exceptions (even unchecked exceptions are caught). It should be more specific.

2. It does nothing in the exception handling block to either alert to the error or correct it.

3. The actions after the try statement assume that the lookup worked, regardless of whether it did or not.

	Exercise 12.32
All exceptions are caught by the first catch because Exception is a super type of all other exception types, so it can never reach the error handling for unchecked exceptions (RuntimeException).

	Exercise 12.33

/**

 * Capture a key that is a duplicate for an entry

 * in the address book.

 *

 * @author David J. Barnes and Michael Kölling.

 * @version 2011.07.31

 */

public class DuplicateKeyException extends RuntimeException

{

 // The duplicate key.

 private String key;

 /**

 * Store the details in error.

 * @param key The duplicate key.

 */

 public DuplicateKeyException(String key)

 {

 this.key = key;

 }

 /**

 * @return The key in error.

 */

 public String getKey()

 {

 return key;

 }

 /**

 * @return A diagnostic string containing the key in error.

 */

 public String toString()

 {

 return "This key is a duplicate: " + key;

 }

}

	Exercise 12.34
The choice behind making DuplicateKeyException checked or unchecked should follow the principles we have outlined in the preceding sections. If its arising is likely to be the result of a logical error in the code, then choose unchecked. If duplicate keys are likely to arise on a regular basis, and need anticipating in normal usage then checked is acceptable. There is no absolute right answer to this question; it all depends on application context.

	Exercise 12.36
testForAdditionError() results in an assertion failure. Note that the BlueJ environment must be configured to enable assertions at runtime. See the enableassertions option in the Java tools documentation and Appendix A for how to configure BlueJ.

	Exercise 12.37
Yes, it should have a consistency check because we might change something into a key that already exists, thereby decreasing the count.

	Exercise 12.38
It fails at the consistentSize() assertion in removeDetails() because it does not remove the entry which uses the address as the key.

	Exercise 12.39
If you could change the phone number of a ContactDetails object, the phone number used as a key in the book would no longer be correct. This would result in problems in the methods that uses the phone number as the key.

	Exercise 12.40
A sample of the information available is:

· whether the file is readable – canRead()
· writeable – canWrite()
· executable – canExecute()
· its parent directory/folder – getParent()
· its length – length()

	Exercise 12.41

You can use the method isDirectory() on the File object.

	Exercise 12.42

Not much is available about the contents of a file through the File API.

	Exercise 12.43

Unlike the File class, the Path interface reveals little about the file or directory to which it refers. That information is obtained via the Files class. Some of the information available from Files is:

· Whether a file exists – exists().

· The file's 'attributes' – getAttribute(). Here 'attribute' is non-specific and largely depends upon the facilities offered by the host operating system.

· The file's time of last modification – getLastModifiedTime().

· The file's access permissions – getPosixFilePermissions().

· Whether the file is a directory – isDirectory().

· Whether the file is a hidden – isHidden().

· Whether the file is writable – isWritable().

The static probeContentType() method provides a way to attempt to discover information a file's contents.

	Exercise 12.44
The following solution stores each line until a call to saveGameLog() writes the log. This is available as 12-44-zuul-logging.
import java.io.*;

import java.util.LinkedList;

import java.util.List;

import java.util.Scanner;

/**

 * This class is part of the "World of Zuul" application.

 * "World of Zuul" is a very simple, text based adventure game.

 *

 * This parser reads user input and tries to interpret it as an "Adventure"

 * command. Every time it is called it reads a line from the terminal and

 * tries to interpret the line as a two word command. It returns the command

 * as an object of class Command.
 *
 * The parser records a log of the game that can be saved.
 *

 * The parser has a set of known command words. It checks user input against

 * the known commands, and if the input is not one of the known commands, it

 * returns a command object that is marked as an unknown command.

 *

 * @author Michael Kölling and David J. Barnes

 * @version 2011.07.31
 */

public class Parser

{

 private CommandWords commands; // holds all valid command words

 private Scanner reader; // source of command input

 // A log of all commands read.

 private List<String> commandLog;

 // Where to write the game log.

 private static String DEFAULT_LOGFILE = "zuul_log.txt";

 /**

 * Create a parser to read from the terminal window.

 */

 public Parser()

 {

 commands = new CommandWords();

 reader = new Scanner(System.in);

 commandLog = new LinkedList<String>();

 }

 /**

 * @return The next command from the user.

 */

 public Command getCommand()

 {

 String inputLine; // will hold the full input line

 String word1 = null;

 String word2 = null;

 System.out.print("> "); // print prompt

 inputLine = reader.nextLine();

 log(inputLine);

 // Find up to two words on the line.

 Scanner tokenizer = new Scanner(inputLine);

 if(tokenizer.hasNext()) {

 word1 = tokenizer.next(); // get first word

 if(tokenizer.hasNext()) {

 word2 = tokenizer.next(); // get second word

 // note: we just ignore the rest of the input line.

 }

 }

 // Now check whether this word is known. If so, create a command

 // with it. If not, create a "null" command (for unknown command).

 if(commands.isCommand(word1)) {

 return new Command(word1, word2);

 }

 else {

 return new Command(null, word2);

 }

 }

 /**

 * Print out a list of valid command words.

 */

 public void showCommands()

 {

 commands.showAll();

 }

 /**

 * Save a log of the game.

 * @return true if successful, false otherwise.

 */

 public boolean saveGameLog()

 {

 return saveGameLog(DEFAULT_LOGFILE);

 }

 /**

 * Save a log of the game to the given file name.

 * @param filename Where to save the log.

 * @return true if successful, false otherwise.

 */

 public boolean saveGameLog(String filename)

 {

 boolean success = true;

 try {

 FileWriter log = new FileWriter(filename);

 for(String inputLine : commandLog) {

 log.write(inputLine);

 log.write('\n');

 }

 log.close();

 }

 catch(IOException e) {

 // We could report the reason for failure here.

 success = false;

 }

 return success;

 }

 private void log(String inputLine)

 {

 commandLog.add(inputLine);

 }

}
The Game class contains the following additional method that is called at the end of the game:

 /**

 * Try to save a log of the game.

 */

 private void saveGameLog()

 {

 if(parser.saveGameLog()) {

 System.out.println("Game log saved.");

 }

 else {

 System.out.println("Unable to save the game log.");

 }

 }

A variation on this approach could involve the introduction of a user save command that writes out the current version of the log.
The command-by-command saving version can also be achieved by having the parser call its own saveGameLog() method each time it adds a new command to its log list. The advantage of this approach is that it is more robust to program failure, allowing the game state to be restored on a restart. The disadvantage is the overhead of writing the complete log each time, which may become large if the game were to last several hours. This can be mitigated by opening the file in 'append' mode and simply writing each new command as soon as it is read.
If the open-write-close process is too costly, keep the file open throughout the game and ensure that the flush() method of the FileWriter is called after each write, in case of failure.

	Exercise 12.47

A solution is available in 12-47-tech-support-io. The file-handling operations have been placed in a separate class called ResponseReader. Note that one effect of this refactoring is that responses occupy a single line – there are no embedded newline characters. This has both pros and cons.
The most obvious negative aspect is that the lines output by the responder are very long. However, this actually brings the opportunity for flexibility in formatting the output according to the support system's user interface. If multiple, shorter output lines are required it is easy to split a String at whitespace characters and then build shorter, multi-line output via a StringBuilder object, for instance.

	Exercise 12.49
Some of the next methods are given below.
BigDecimal nextBigDecimal()

Scans the next token of the input as a BigDecimal.

BigInteger nextBigInteger()

Scans the next token of the input as a BigInteger.

boolean nextBoolean()

Scans the next token of the input as a boolean.

byte nextByte()

Scans the next token of the input as a byte.

double nextDouble()

Scans the next token of the input as a double.

float nextFloat()

Scans the next token of the input as a float.

int nextInt()

Scans the next token of the input as an int.

String nextLine()

Advances this scanner past the current line and returns the input that was skipped as a String.

long nextLong()

Scans the next token of the input as a long.

short nextShort()

Scans the next token of the input as a short.

	Exercise 12.52

See 12-52-network for a solution. The reading and writing has been placed in the FileHandler class. The classes NewsFeed and Post must implement the java.io.Serializable interface. It is not necessary for the individual subclasses of Post to implement the interface.

java.io.InvalidClassException: NewsFeed; local class incompatible: stream classdesc serialVersionUID = 7412497150530686252, local class serialVersionUID = 5470017242796117334

	

